K. ZUREK

Leveraging the many faces (and phases) of matter

BROADENING THE SEARCHLIGHT: NEW IDEAS IN DARK MATTER DETECTION

NEW IDEAS IN DARK MATTER THEORY

Old paradigm: weak scale dark matter (with relic density)

fixed by freeze-out)

$$n\langle \sigma v \rangle = H(T_{fo})$$

$$\implies \langle \sigma v \rangle \simeq \frac{1}{(20 \text{ TeV})^2} \simeq \frac{g_{wk}^4}{4\pi (2 \text{ TeV})^2}$$

Kolb and Turner

WEAK SCALE PARADIGM: UNDER ASSAULT

Z-boson interacting dark matter: ruled out

Higgs interacting dark matter: active target

WEAK SCALE PARADIGM: UNDER ASSAULT

TOWARDS LIGHT DARK MATTER

Dark Matter May Reside in a Hidden Sector

e.g. a stable dark pion no weak force

$$\pi_v^+ \pi_v^- \to \pi_v^0 \pi_v^0$$
$$\pi_v^0 \to b\bar{b}, \ \gamma\gamma$$

BROAD RANGE OF MODELS

Standard Model

Connector

Dark Matter

Supersymmetric

Hooper, KZ 2008, Feng and Kumar Z

Hooper, KZ 2008, Feng and Kumar 2008
Arkani-Hamed, Weiner 2008
Baumgart, Cheung et al 2009 ...

Baryogenesis

Buckley & Randall 2010, Cheung & KZ 2011 Fileviez-Perez & Wise 2010, 2013 ...

Non-Abelian

Kribs, Roy, Terning, KZ 2009 ...

Hidden Charged

Pospelov & Ritz 2007, Feng et al 2009 ...

Dark Disk

Fan, Katz, Randall, Reece 2013 ...

Atomic Kaplan et al 2009 ...

Nuggets

Wise, Zhang 2014 ...

WEAK SCALE PARADIGM: UNDER ASSAULT

???

BROADENING THE SEARCHLIGHT

- New detection techniques to search for light dark matter
 - Sensitive to fainter whispers
 - 1. "Designer" materials
 - 2. Super-sensitive calorimeters with low dark counts
 - New modes to detect dark matter
 - Looking beyond billiard ball nuclear recoils

DIRECT DETECTION GOLD STANDARD

 Nuclear recoil experiments; basis of enormous progress in direct detection

 $v\sim 300~{
m km/s}\sim 10^{-3}c \implies E_D\sim 100~{
m keV}$ for 50 GeV target

DARK MATTER LANDSCAPE

NUCLEAR RECOILS

Kinematic penalty when DM mass drops below nucleus mass

$$E_D = \frac{q^2}{2m_N} \qquad q_{\text{max}} = 2m_X v$$

$$E_D \gtrsim \text{eV} \leftrightarrow m_X = 300 \text{ MeV}$$

even though
$$E_{\rm kin} \gtrsim 300~{\rm eV}$$

COLLECTING HEAT

Basic hurdle for detecting light DM:

Rare events with little energy deposit!

- Challenge: creating low enough noise environments to detect whispers
- Fundamentally limited by the gap
 - In atoms, ionization energy is at least 10 eV
 - In semiconductors, band gap is typically > 1 eV

COLLECTING HEAT

- Principles already in play in current direct detection experiments such as SuperCDMS
- Large target; concentrate small energy deposits onto small calorimeters

Transition Edge Sensor calorimeter

NEXT UP: ELECTRON

More bang for the buck if DM lighter than 1 GeV

$$E_D = \frac{q^2}{2m_e} \qquad q_{\text{max}} = 2m_X v$$

Allows to extract all of DM kinetic energy for DM MeV and heavier

$$E_D \gtrsim \text{eV} \leftrightarrow m_X = 1 \text{ MeV}$$

ELECTRONS IN MATERIALS

In insulators, like xenon

Tightly bound; ionize for signal

LXE refractive index 10^{-1} 10^{-2} 10^{-3} $\operatorname{Re}(n)$ $\operatorname{Im}(n)$

An, Pospelov, Pradler, Ritz 1412.8378

Gap!

 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6}

In semi-conductors, like Ge, Si

Valence electrons become conducting; presence of collective modes

ELECTRONS IN MATERIALS

In insulators, like xenon

Tightly bound; ionize for signal

Gap = DM Kinetic Energy

In semi-conductors, like Ge, Si

Valence electrons become conducting; presence of collective modes

P. Sorensen et al 1206.2644

Essig et al 1509.01598

DARK MATTER LANDSCAPE

OTHER SMALL GAP MATERIALS — GRAPHENE

Symmetry structure of material gives rise to special points with no gap

DARK MATTER RATE

DARK MATTER LANDSCAPE

COOPER PAIRS

- ightharpoonup Smaller gap $\Delta \simeq 0.3 \; \mathrm{meV}$
 - = more sensitivity to environmental noise
 - = more sensitivity to light dark matter

DARK MATTER LANDSCAPE

QCD axion, "ultralight frontier"

~meV energy

resolution

~eV energy

resolution

~keV energy

resolution

ABSORPTION

Dark Photon

DARK MATTER LANDSCAPE

LOW GAP MATERIAL

- Superfluids are naturally insensitive to noise. A good light DM detector? In the context of ordinary nuclear recoils, yes, see e.g. McKinsey's group 1605.00694
 See talks this session
- ▶ To detect lighter DM, couple to phonon modes.
- Viable? At first glance no

$$E_D \sim v_X q$$
 vs $c_s \ll v_X$ $E_D \sim c_s q$

Next glance -- yes!

LOW GAP MATERIAL

- Superfluids are naturally insensitive to noise. A good light DM detector? In the context of ordinary nuclear recoils, yes, see e.g. McKinsey's group 1605.00694
 See talks this session
- To detect lighter DM, couple to phonon modes.
- Viable? At first glance no

$$E_D \sim v_X q$$
 vs $c_s \ll v_X$ $E_D \sim c_s q$

Next glance -- yes!

MULTI-EXCITATIONS

 Calculated and observed for cold neutrons
 See talk by E. Krotschek

- However, this is in a very different kinematic regime
- No existing calculations in regime of interest

Internal note, R. Golub, 1977

Beauvois et al 1605.02638

MULTI-EXCITATIONS

 emit back-to-back excitations to bleed off energy while conserving momentum

HOW TO CALCULATE?

- Theory developed by Landau-Khalatnikov and Feynman-Cohen
- Quantize the fluid Hamiltonian, like SHO

$$H_{0} = \frac{1}{2} \sum_{k} \left(\rho_{0} v_{\vec{k}} v_{-\vec{k}} + \phi(k) \rho_{\vec{k}} \rho_{-\vec{k}} \right) \qquad m_{\text{He}}^{2} S(k) = \langle \rho_{k} \rho_{-k} \rangle$$

 Fluid is strongly coupled; excitations are propagating in interacting background (requires care)

RATE

Compute

$$(\vec{k}_1 \vec{k}_2 | H_3 | \vec{q}) = -\frac{\left(\vec{q} \cdot \vec{k}_1 U(k_1) + \vec{q} \cdot \vec{k}_2 U(k_2) + q^2 U(k_1) U(k_2)\right)}{2m_{\text{He}}(S(q)S(k_1)S(k_2))^{1/2}}$$

$$G(q,\omega) \sim \frac{1}{\omega}$$

Or, use simulation data

Campbell, Krotschek, Lichtenegger Phys Rev B 91 184510

RESULTS

Great potential!

 Large part depends on better energy resolution sensors (TESs); TESs are portable to multiple targets

Semiconductors SuperCDMS

Current energy resolution: ~300 eV

Goal: ~1 eV

Superconductors

Goal: ~1 meV

Superfluid Helium

Goal: ~1 meV

- New ideas for dark matter detection!
- Moving beyond nuclear recoils into phases of matter crucial to access broader areas of DM parameter space
- Target diversity essential. What kinds of materials remain to be explored?

- Leverage progress is materials and condensed matter physics
- Realizing experimental program is 5-10+ years into future
- Every step of R&D for current direct detection experiments (particularly SuperCDMS) can be applied to new dark matter candidates
- Better energy resolution sensors portable between targets
- Nine orders of magnitude increased sensitivity in mass
- Long view necessary!

